Heteroscedastic Relevance Vector Machine
نویسندگان
چکیده
In this work we first propose a heteroscedastic generalization to RVM, a fast Bayesian framework for regression, based on some recent similar works. We use variational approximation and expectation propagation to tackle the problem. The work is still under progress and we are examining the results and comparing with the previous works.
منابع مشابه
TUNNEL BORING MACHINE PENETRATION RATE PREDICTION BASED ON RELEVANCE VECTOR REGRESSION
key factor in the successful application of a tunnel boring machine (TBM) in tunneling is the ability to develop accurate penetration rate estimates for determining project schedule and costs. Thus establishing a relationship between rock properties and TBM penetration rate can be very helpful in estimation of this vital parameter. However, this parameter cannot be simply predicted since there ...
متن کاملRelevance vector machine and multivariate adaptive regression spline for modelling ultimate capacity of pile foundation
This study examines the capability of the Relevance Vector Machine (RVM) and Multivariate Adaptive Regression Spline (MARS) for prediction of ultimate capacity of driven piles and drilled shafts. RVM is a sparse method for training generalized linear models, while MARS technique is basically an adaptive piece-wise regression approach. In this paper, pile capacity prediction models are developed...
متن کاملThe relevance vector machine technique for channel equalization application
The relevance vector machine (RVM) technique is applied to communication channel equalization. It is demonstrated that the RVM equalizer can closely match the optimal performance of the Bayesian equalizer, with a much sparser kernel representation than that is achievable by the state-of-art support vector machine (SVM) technique.
متن کاملFuzzy relevance vector machine for learning from unbalanced data and noise
Handing unbalanced data and noise are two important issues in the field of machine learning. This paper proposed a complete framework of fuzzy relevance vector machine by weighting the punishment terms of error in Bayesian inference process of relevance vector machine (RVM). Above problems can be learned within this framework with different kinds of fuzzy membership functions. Experiments on bo...
متن کاملRelevance-Vector-Machine Quantization and Density-Function Estimation: Application to HMM-Based Multi-Aspect Target Classification
The relevance vector machine (RVM) is applied for feature-vector quantization (codebook design) and for density-function estimation in high-dimensional feature space. The RVM represents a Bayesian extension of the widely applied support vector machine (SVM). The use of RVMs for quantization and density-function estimation is explored with application to discrete and continuous HMMs, respectivel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1301.2015 شماره
صفحات -
تاریخ انتشار 2013